A RecA Protein Surface Required for Activation of DNA Polymerase V

نویسندگان

  • Angela J. Gruber
  • Aysen L. Erdem
  • Grzegorz Sabat
  • Kiyonobu Karata
  • Malgorzata M. Jaszczur
  • Dan D. Vo
  • Tayla M. Olsen
  • Roger Woodgate
  • Myron F. Goodman
  • Michael M. Cox
چکیده

DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3'-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3'-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA'2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase

Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD'2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent ATPase; (2) bound ATP is required f...

متن کامل

Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis.

SOS mutagenesis in Escherichia coli requires DNA polymerase V (pol V) and RecA protein to copy damaged DNA templates. Here we show that two distinct biochemical modes for RecA protein are necessary for pol V-catalyzed translesion synthesis. One RecA mode is characterized by a strong stimulation in nucleotide incorporation either directly opposite a lesion or at undamaged template sites, but by ...

متن کامل

DNA polymerase V and RecA protein, a minimal mutasome.

A hallmark of the Escherichia coli SOS response is the large increase in mutations caused by translesion synthesis (TLS). TLS requires DNA polymerase V (UmuD'2C) and RecA. Here, we show that pol V and RecA interact by two distinct mechanisms. First, pol V binds to RecA in the absence of DNA and ATP and second, through its UmuD' subunit, requiring DNA and ATP without ATP hydrolysis. TLS occurs i...

متن کامل

A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V.

In Escherichia coli, cell survival and genomic stability after UV radiation depends on repair mechanisms induced as part of the SOS response to DNA damage. The early phase of the SOS response is mostly dominated by accurate DNA repair, while the later phase is characterized with elevated mutation levels caused by error-prone DNA replication. SOS mutagenesis is largely the result of the action o...

متن کامل

Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword.

1953, the year of Watson and Crick, bore witness to a less acclaimed yet highly influential discovery. Jean Weigle demonstrated that upon infection of Escherichia coli, λ phage deactivated by UV radiation, and thus unable to form progeny, could be reactivated by irradiation of the bacterial host. Evelyn Witkin and Miroslav Radman later revealed the presence of the SOS regulon. The more than 40 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015